Megakaryocytic cell line-specific hyperploidy by cytotoxic necrotizing factor bacterial toxins.
نویسندگان
چکیده
Cytotoxic necrotizing factor (CNF) toxins, isolated from certain Escherichia coli strains known to cause intestinal and extra intestinal infections, induce reorganization of the actin cytoskeleton and generate hyperploidy in adherent cell lines. We have examined the effect of CNF toxin on one of the few cell types that naturally increase nuclear DNA content, megakaryocytes. Our studies show that only hematopoietic cells capable of differentiating along the megakaryocyte lineage responded to the CNF2 toxin by becoming polyploid and by reorganizing actin. The K562, HEL, and CHRF-288-11 cell lines can be induced with phorbol ester to differentiate along the megakaryocyte lineage, and these cells also respond to the toxin with increased DNA content and actin cytoskeletal rearrangements. Interestingly, treatment of the K562 and HEL cell lines with CNF2 does not result in an increase in production of the megakaryocytic marker glycoprotein IIIa, unlike phorbol ester treatment. Conversely, two T-cell leukemic cell lines, CEM and Molt4, and the promyelocytic HL-60 cell line, which do not differentiate along the megakaryocyte lineage in response to phorbol myristate acetate, do not respond to CNF2, by increased expression of gpIIIa, increased nuclear DNA content, or actin reorganization. A potential target of these toxins, RhoA, is expressed by both megakaryocytic and nonmegakaryocytic cell lines, as shown by reverse transcription-polymerase chain reaction and Western blot. Although it is clear that the CNF toxins can affect a wide variety of adherent nonhematopoietic cell lines, we propose that the response to CNF, in terms of reorganizing actin structure and increase in DNA content in hematologic suspension cells, correlates with the capability of these target cells to differentiate along the megakaryocytic lineage.
منابع مشابه
CNF TOXINS AND HYPERPLOIDY 3467 Fluorescence - Activated Cell Sorting ( FACS } Analysis Cells
Cytotoxic necrotizing factor (CNF) toxins, isolated from certain Escherichia coli strains known t o cause intestinal and extra intestinal infections, induce reorganization of the actin cytoskeleton and generate hyperploidy in adherent cell lines. We have examined the effect of CNF toxin on one of the few cell types that naturally increase nuclear DNA content, megakaryocytes. Our studies show th...
متن کاملCell-to-Cell Propagation of the Bacterial Toxin CNF1 via Extracellular Vesicles: Potential Impact on the Therapeutic Use of the Toxin
Eukaryotic cells secrete extracellular vesicles (EVs), either constitutively or in a regulated manner, which represent an important mode of intercellular communication. EVs serve as vehicles for transfer between cells of membrane and cytosolic proteins, lipids and RNA. Furthermore, certain bacterial protein toxins, or possibly their derived messages, can be transferred cell to cell via EVs. We ...
متن کاملEffects of cytotoxic necrotizing factor 1 and lethal toxin on actin cytoskeleton and VE-cadherin localization in human endothelial cell monolayers.
Integrity of the vascular endothelium is largely dependent on endothelial cell shape and establishment of intercellular junctions. Certain pathogenic bacterial toxins alter the cytoskeletal architecture of intoxicated cells by modulating the GTPase activity of p21 Rho family proteins. In the present study we have analyzed the effect of Rho-directed toxins on the actin cytoskeleton and monolayer...
متن کاملThe Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay.
The cell cytoskeleton is widely acknowledged as a master for NK cell function. Specifically, actin filaments guide the NK cell binding to target cells, engendering the formation of the so-called immunological synapse, while microtubules direct the killer behavior. All these cytoskeleton-dependent activities are competently governed by the Rho GTPases, a family of regulatory molecules encompassi...
متن کاملThe Rho GTPase activators CNF1 and DNT bacterial toxins have mucosal adjuvant properties.
Cytotoxic necrotizing factor 1 (CNF1) from uropathogenic Escherichia coli belongs to a family of factors activating Rho GTPases. We report the in vivo effects of CNF1 in mice co-fed toxin and the soluble protein antigen ovalbumin (OVA). Similar to cholera toxin, CNF1 elicits adjuvanticity anti-OVA responses, both systemic and mucosal. In contrast, the catalytic inactive mutant CNF1-C866S demons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 88 9 شماره
صفحات -
تاریخ انتشار 1996